Serine-Dependent Sphingolipid Synthesis Is a Metabolic Liability of Aneuploid Cells.
نویسندگان
چکیده
Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness of aneuploid cells. Remarkably, the fitness of aneuploid cells improves or deteriorates upon genetically decreasing or increasing ceramides, respectively. Combined targeting of serine and sphingolipid synthesis could be exploited to specifically target cancer cells, the vast majority of which are aneuploid.
منابع مشابه
De novo sphingolipid synthesis is essential for viability, but not for transport of glycosylphosphatidylinositol-anchored proteins, in African trypanosomes.
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blo...
متن کاملRegulation of sphingolipid synthesis through Orm1 and Orm2 in yeast.
Sphingolipids are crucial components of membranes, and sphingolipid metabolites serve as signaling molecules. Yeast Orm1 and Orm2 belong to a conserved family of ER membrane proteins that regulate serine palmitoyltransferase, which catalyzes the first and rate-limiting step in sphingolipid synthesis. We now show that sphingolipid synthesis through Orm1 is a target of TOR signaling, which regula...
متن کاملIntracellular APP Domain Regulates Serine-Palmitoyl-CoA Transferase Expression and Is Affected in Alzheimer's Disease
Lipids play an important role as risk or protective factors in Alzheimer's disease (AD), a disease biochemically characterized by the accumulation of amyloid beta peptides (Aβ), released by proteolytic processing of the amyloid precursor protein (APP). Changes in sphingolipid metabolism have been associated to the development of AD. The key enzyme in sphingolipid de novo synthesis is serine-pal...
متن کاملAutophagy regulates sphingolipid levels in the liver.
Sphingolipid levels are tightly regulated to maintain cellular homeostasis. During pathologic conditions such as in aging, inflammation, and metabolic and neurodegenerative diseases, levels of some sphingolipids, including the bioactive metabolite ceramide, are elevated. Sphingolipid metabolism has been linked to autophagy, a critical catabolic process in both normal cell function and disease; ...
متن کاملORMDLs results in elevated sphingolipid synthesis under control conditions and reverses the homeostatic inhibition of sphingolipid synthesis resulting from elevated cellular sphingolipid
The ORM1 ( Saccharomyces cerevisiae )-like proteins (ORMDLs) and their yeast orthologs, the ORMs, regulate the initiating and rate-limiting enzyme in sphingolipid biosynthesis, serine palmitoyltransferase (SPT) ( 1–4 ). The three ORMDL isoforms (ORMDL1–3) are small (17.5 kDa) hydrophobic membrane proteins that are situated in the endoplasmic reticulum along with SPT. The three isoforms are high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 21 13 شماره
صفحات -
تاریخ انتشار 2017